Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach
نویسندگان
چکیده
Optimal reactive power dispatch (ORPD) problem is an important problem in the operation of power systems. It is a nonlinear and mixed integer programming problem, which determines optimal values for control parameters of reactive power producers to optimize specific objective functions while satisfying several technical constraints. In this paper, stochastic multi-objective ORPD (SMO-ORPD) problem is studied in a wind integrated power system considering the loads and wind power generation uncertainties. The proposed multi objective optimization problem is solved using ε-constraint method, and fuzzy satisfying approach is employed to select the best compromise solution. Two different objective functions are considered as follow: 1) minimization of the active power losses and 2) minimization of the voltage stability index (named L-index). In this paper VAR compensation devices are modeled as discrete variables. Moreover, to evaluate the performance of the proposed method for solution of multi-objective problem, the obtained results for deterministic case (DMO-ORPD), are compared with the available methods in literature. The proposed method is examined on the IEEE-57 bus system. The proposed models are implemented in GAMS environment. The numerical results substantiate the capability of the proposed SMO-ORPD problem to deal with uncertainties and to determine the best settings of control variables. © 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations
Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...
متن کاملUsing a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملSolution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کاملA Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach
The major problem of wind turbines is the great variability of wind power production. The dynamic change of the wind speed returns the quantity of the power injected to networks. Therefore, wind–thermal generation scheduling problem plays a key role to implement clean power producers in a competitive environment. In deregulated power systems, the scheduling problem has various objectives than i...
متن کاملMulti-Objective Stochastic Programming in Microgrids Considering Environmental Emissions
This paper deals with day-ahead programming under uncertainties in microgrids (MGs). A two-stage stochastic programming with the fixed recourse approach was adopted. The studied MG was considered in the grid-connected mode with the capability of power exchange with the upstream network. Uncertain electricity market prices, unpredictable load demand, and uncertain wind and solar power values, du...
متن کامل